分享
中新经纬>>

传奇bt手游视频,长江七号观后感,梦幻手游小火龙废了,南京乐购仕生活广场

2019-07-18 中新经纬

   

传奇bt手游视频毫无疑问,深度学习正在潜移默化地改变着我们的生活方式,而背后支撑深度学习的GPU计算也正变得越来越普及。在日前召开的NVIDIAGTC2016(2016NVIDIAGPU技术大会)上,作为国内最大的自营电商平台,京东也分享了其在深度学习领域的研究、应用。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。毫无疑问,深度学习正在潜移默化地改变着我们的生活方式,而背后支撑深度学习的GPU计算也正变得越来越普及。在日前召开的NVIDIAGTC2016(2016NVIDIAGPU技术大会)上,作为国内最大的自营电商平台,京东也分享了其在深度学习领域的研究、应用。短短一年时间,提升了12倍,这样的结果几乎是不可想象的。翁志对此也表现出了很强的兴趣。他说,尽管短时间内他们还不会考虑采购DGX-1,但在某些特定需求上,比如大量数据的集中处理分析,DGX-1是非常有优势的。据翁志介绍,京东用于深度学习线下模型训练的GPU卡在1k~2k之间,应该说这是一个不小的量(此前在采访科大讯飞时,他们透露的数据是几百块),未来这一体量还可能继续增加,毕竟距离真正的智能还比较远。

长江七号观后感短短一年时间,提升了12倍,这样的结果几乎是不可想象的。翁志对此也表现出了很强的兴趣。他说,尽管短时间内他们还不会考虑采购DGX-1,但在某些特定需求上,比如大量数据的集中处理分析,DGX-1是非常有优势的。据翁志介绍,京东用于深度学习线下模型训练的GPU卡在1k~2k之间,应该说这是一个不小的量(此前在采访科大讯飞时,他们透露的数据是几百块),未来这一体量还可能继续增加,毕竟距离真正的智能还比较远。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。毫无疑问,以深度学习为代表的高性能计算领域近年来确实受到了越来越多人的关注。不可否认,他们所做的事情正在使我们的生活变得更美好,但是同样的他们还在面临技术上存在的一些挑战。可以预见的是包括NVIDIA,以及围绕在其周边的产业伙伴正在针对性的做一些解决方案,以应用为主的一方则在考虑如何更好地优化、提升。随着双方的不断精进,未来像AlphaGo战胜李世石的事情会越来越多,那时我们或许考虑的将不再是语音识别、图片搜索、无人驾驶等改善生活方式的,而是人工智能到底是不是我们所想要的?

梦幻手游小火龙废了除此之外,针对深度学习领域,NVIDIA还重磅发布了全球第一款基于TeslaP100打造的面向深度学习的专用设备DGX-1。相比传统的双路至强平台,DGX-1在性能上提升了近60倍,节点带宽提升了10倍以上,训练时间缩短75倍。根据NVIDIA针对亿照片进行训练的测试结果显示,相比去年发布的Maxwell产品在性能提升上达到了12倍。短短一年时间,提升了12倍,这样的结果几乎是不可想象的。翁志对此也表现出了很强的兴趣。他说,尽管短时间内他们还不会考虑采购DGX-1,但在某些特定需求上,比如大量数据的集中处理分析,DGX-1是非常有优势的。据翁志介绍,京东用于深度学习线下模型训练的GPU卡在1k~2k之间,应该说这是一个不小的量(此前在采访科大讯飞时,他们透露的数据是几百块),未来这一体量还可能继续增加,毕竟距离真正的智能还比较远。当然,这只是深度学习最终应用的一个体现,即利用大量的数据分析用户需求,并匹配其需要的信息,购物平台如此、现在很多资讯推荐APP也是如此。除此之外,深度学习最终价值的体现其实还有很多,比如AlphaGo大战李世石,背后深度学习起着非常重要的作用,再比如自动驾驶、语音识别、图像识别,都是深度学习的研究范畴。毫无疑问,深度学习正在潜移默化地改变着我们的生活方式,而背后支撑深度学习的GPU计算也正变得越来越普及。在日前召开的NVIDIAGTC2016(2016NVIDIAGPU技术大会)上,作为国内最大的自营电商平台,京东也分享了其在深度学习领域的研究、应用。

南京乐购仕生活广场深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。毫无疑问,深度学习正在潜移默化地改变着我们的生活方式,而背后支撑深度学习的GPU计算也正变得越来越普及。在日前召开的NVIDIAGTC2016(2016NVIDIAGPU技术大会)上,作为国内最大的自营电商平台,京东也分享了其在深度学习领域的研究、应用。短短一年时间,提升了12倍,这样的结果几乎是不可想象的。翁志对此也表现出了很强的兴趣。他说,尽管短时间内他们还不会考虑采购DGX-1,但在某些特定需求上,比如大量数据的集中处理分析,DGX-1是非常有优势的。据翁志介绍,京东用于深度学习线下模型训练的GPU卡在1k~2k之间,应该说这是一个不小的量(此前在采访科大讯飞时,他们透露的数据是几百块),未来这一体量还可能继续增加,毕竟距离真正的智能还比较远。比如就开篇提到的商品推荐问题,翁志就讲到,目前在这方面京东还是有很大提升空间的,而他们也在努力提升这方面的能力。同时他也指出,这其中的难度还是很大,比如即便京东在数据质量(包括数据类型、数据准确性等)方面是同行中算是出类拔萃的,但是由于平台每天都有大量新的数据产生,再加上这些新数据的准确性又没办法准确评估,非常容易导致最终的分析结果出现偏差。

(编辑:董文博)
中新经纬版权所有,未经书面授权,任何单位及个人不得转载、摘编以其它方式使用。
关注中新经纬微信公众号(微信搜索“中新经纬”或“jwview”),看更多精彩财经资讯。
关于我们  |   About us  |   联系我们  |   广告服务  |   法律声明  |   招聘信息  |   网站地图

本网站所刊载信息,不代表中新经纬观点。 刊用本网站稿件,务经书面授权。

未经授权禁止转载、摘编、复制及建立镜像,违者将依法追究法律责任。

[京ICP备17012796号-1]

违法和不良信息举报电话:18513525309 举报邮箱:zhongxinjingwei@chinanews.com.cn

Copyright ©2017-2019 jwview.com. All Rights Reserved


北京中新经闻信息科技有限公司